Normalization of Quantum State \(\Phi_1\) in Hydrogen Atom

Answered using GPT 40 by GPT40

Question:

(29 marks) Consider the electron of a hydrogen atom. Let the states Ψ𝑛,𝑙,π‘š with 𝑛, 𝑙, π‘š integers, 𝑛 = 1, 2, 3, ...; 𝑙 = 0, 1, ..., 𝑛 βˆ’ 1; βˆ’π‘™ ≀ π‘š ≀ 𝑙, be an orthonormal basis made of common eigenstates of the Hamiltonian, total angular momentum and angular momentum around the 𝑧 axis. That is, 𝐻ˆΨ𝑛,𝑙,π‘š = 𝐸𝑛Ψ𝑛,𝑙,π‘š where 𝐸𝑛 = βˆ’ 𝐸0 𝑛 2 , and 𝐸0 = 13.6𝑒𝑉, 𝐿ˆ 2Ψ𝑛,𝑙,π‘š = 𝑙(𝑙 + 1)ℏ 2Ψ𝑛,𝑙,π‘š, 𝐿ˆ 𝑧Ψ𝑛,𝑙,π‘š = π‘šβ„Ξ¨π‘›,𝑙,π‘š. The corresponding orthonormality conditions are βŸ¨Ξ¨π‘›,𝑙,π‘š|Ψ𝑛 β€² ,𝑙′ ,π‘šβ€²βŸ© = 𝛿𝑛,𝑛′𝛿𝑙,π‘™β€²π›Ώπ‘š,π‘šβ€². a) (2 marks) Consider the state Ξ¦1 = √ 2Ξ¨1,0,0 βˆ’ 2Ξ¨2,1,1 + (2 + 𝑖)Ξ¨2,1,βˆ’1. Normalise Ξ¦1

Answer:

To normalize the state (\Phi_1), we need to ensure that the inner product (\langle \Phi_1 | \Phi_1 \rangle = 1). The state (\Phi_1) is given by:

[ \Phi_1 = \sqrt{2} \Psi_{1,0,0} - 2 \Psi_{2,1,1} + (2 + i) \Psi_{2,1,-1} ]

First, we calculate the inner product (\langle \Phi_1 | \Phi_1 \rangle):

[ \langle \Phi_1 | \Phi_1 \rangle = \left( \sqrt{2} \Psi_{1,0,0} - 2 \Psi_{2,1,1} + (2 + i) \Psi_{2,1,-1} \right)^\dagger \left( \sqrt{2} \Psi_{1,0,0} - 2 \Psi_{2,1,1} + (2 + i) \Psi_{2,1,-1} \right) ]

Using the orthonormality conditions (\langle \Psi_{n,l,m} | \Psi_{n',l',m'} \rangle = \delta_{n,n'} \delta_{l,l'} \delta_{m,m'}), we can simplify this expression:

[ \langle \Phi_1 | \Phi_1 \rangle = (\sqrt{2})^2 \langle \Psi_{1,0,0} | \Psi_{1,0,0} \rangle + (-2)^2 \langle \Psi_{2,1